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Abstract

I develop a two-tier asset demand system that incorporates endogenous aggregate

allocation and short sales, and propose a two-step estimation procedure with a novel in-

strument for aggregate estimation, which allows me to exploit both cross-sectional and

time-series variation in institutional holdings. The estimated system provides a frame-

work to answer questions related to demand-side effects of financial intermediaries and

short sales in both aggregate and individual stock markets. I find institutional demand

accounts for a large proportion, if not all, of observed return premiums in size, value

and investment. The short leg, while increasingly important, cannot explain observed

anomaly returns and the formation of the dot-com bubble. However, short sales do

have significant yet disparate pricing impact on stocks with different characteristics. In

the aggregate stock market, unobserved aggregate preference and beliefs rather than

risk-return balance is the main driver of the return predictability of dividend-price

ratio.
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support. Additionally, I thank Andrew Abel, Luke Taylor, Vincent Glode, Sean Myers, Frank Diebold,
Frank Schorfheide, and seminar participants at Wharton and Penn Economics for comments.
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1 Introduction

Recent decades have witnessed the increasingly dominating role of financial intermediaries in

the United States financial markets. Institutional ownership share of equity has grown from

34% to 67% since 1980 as the number of institutions has more than quintupled. Abundant

studies have documented the importance of intermediaries to asset prices, most of which

offer some insight with theories and reduced-form evidence (e.g., Basak and Pavlova (2013);

Vayanos and Woolley (2013); Adrian et al. (2014); Frazzini and Pedersen (2014); He et al.

(2017); Drechsler et al. (2018); Dou et al. (Forthcoming)). However, to quantitatively ex-

amine narratives about demand-side effects of institutions, a demand system with market

clearing of all investors is needed.

Koijen and Yogo (2019) are the first to propose a characteristics-based demand system

that matches institutional holdings data. They provide a framework to study the asset

pricing impact of institutional demand in a structural way, though they simplify several key

aspects. First, they ignore the endogenous choice between risk-free bonds and risky assets

and assume the aggregate flow into the stock market is fixed. This might not be a reasonable

assumption when studying demand-side effects due to market-wide changes. Related, their

framework only exploits cross-sectional variation in holdings data and disregards time-series

variation, which is necessary for aggregate estimation. Finally, they neglect short sales,

which are a unique and important aspect of institutional demand. Plenty of evidence show

their relevance to stock returns, though their exact role is still a matter of heated debate

(e.g., Stambaugh et al. (2012); Geczy et al. (2002); Beber and Pagano (2013)).

To answer questions about institutional demand and short selling, I propose a two-tier

demand system that incorporates both endogenous aggregate allocation and short sales,

inspired by the nested logit model from the differentiated products demand literature (Rosen

(1974); McFadden (1981); Cardell (1997); Gandhi and Nevo (2021)).

Specifically, in the first tier, each investor distributes their resources between a risk-free

bond and the risky asset class (which covers mostly equity securities in the data), depending

on the market conditions, aggregate latent demand, and the diversification within the risky

asset class. This diversification is derived from the second-tier demand, in which investors

form their sub-portfolios across individual risky assets based on their preference over asset

characteristics and residual latent demand. The nested logit model decomposes the total

unobserved demand for individual risky assets into a common aggregate component and a

residual asset-specific component, which are assumed to be orthogonal to each other. This

allows me to incorporate time-series co-movement among demand for individual risky assets,
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which enriches the demand structure. In the meantime, it allows me to easily separate the

demand into two tiers, which simplifies the estimation. Overall, the adoption of the nested

logit model emphasizes the distinct difference between risk-free bonds and risky assets and

allows for a more flexible substitution pattern across assets.

I match the demand system with the detailed institutional holdings data obtained from

Securities and Exchange Commission (SEC) Form 13F. Form 13F is a quarterly institutional

holdings report that is required to be filed by all institutional investment managers with at

least $100 million in assets under management since 1980. It only discloses information on

long positions, and data on institution-level short positions are unavailable. Instead, I utilize

data on stock-level short interest from Compustat to construct a representative short seller

in order to investigate the asset pricing effects of short sales.

The identification strategy follows a two-step procedure. First, I estimate the second-tier

demand within the risky asset class. Conditioning on total investment in risky assets, the

conditional weights of individual risky assets are solely determined by asset characteristics

and asset-specific latent demand. Following the traditional practice, I assume shares out-

standing and characteristics other than price are exogenous. To address the endogeneity of

price, Koijen and Yogo (2019) construct an instrument by extracting exogenous components

of demand from investors’ investment universe and total risky capital. In my model, howev-

er, asset-specific latent demand also affects how much capital is allocated to the risky asset

class, endogenizing current investment in risky assets. Therefore, I improve their instrument

by replacing current investment in risky assets with average past investment in risky assets,

which extracts the low-frequency component that is reasonably exogenous to current latent

demand.

In the second step, the estimation of aggregate demand poses two major challenges. Most

importantly, due to the absence of risk-free holdings data, the above approach cannot be

implemented in the aggregate tier. Instead, I adopt the log-linearization technique from

Gabaix and Koijen (2021), so that only data on risky asset holdings are necessary. The

estimation uses the dynamic panel of all investors, which allows me to exploit the time-series

aspect of the data disregarded by Koijen and Yogo (2019). The other challenge relates to the

endogeneity of price and Sharpe ratio with the aggregate latent demand. I simply utilize the

estimated asset-specific latent demand from the first step, which is imposed by the model

to be orthogonal to the aggregate latent demand. The idea is that asset-specific latent

demand, especially that of investors with larger market shares and assets with larger market

capitalization, sufficiently affects asset prices and aggregate Sharpe ratio in equilibrium but
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remain orthogonal to aggregate latent demand, making them valid instruments.

Once the two-tier demand system is estimated, I demonstrate the asset pricing impact of

institutional demand with four empirical applications. First, I decompose the cross-sectional

variance of stock returns into supply- and demand-side effects. The supply-side effects,

including changes in shares outstanding, characteristics and dividend yield, only explains

10.7 percent of return variation. In sharp contrast, the demand-side effects, including changes

in total wealth, aggregate preference and individual stock preference, respectively account

for 2.5, 0.6 and 86.2 percent. Among these, asset-specific latent demand, which explains 83

percent, is the predominant source of return volatility, consistent with the findings of Koijen

and Yogo (2019). Though aggregate latent demand merely accounts for 0.5 percent of return

variation in the full sample, its effect more than doubled in the latter half of the sample,

indicating a more flexible demand in aggregate equities.

Second, I inspect the connection between institutional demand and common return

anomalies. When financial intermediaries no longer demand the corresponding character-

istics, size and investment premiums become minuscule and insignificant, suggesting these

anomalies can be mainly attributed to institutional demand. In contrast, value premium,

though decreased by approximately 40 percent, stays significant, and profitability premium

is virtually unaffected, suggesting they are more likely to be driven by fundamental reasons.

On the other hand, several papers have focused on the short leg of returns (e.g., Stambaugh

et al. (2012); Avramov et al. (2013); Drechsler and Drechsler (2014)), but I find no evidence

that short-sale constraints drive the observed anomaly returns.

Third, I examine the role of short sales in stock valuation. I first decompose the cross-

sectional variance of stock returns into long- and short-side effects. Results show that the

effect of short sales first became significant around the dot-com bubble and has been growing

to explain approximately 3–4 percent of return variation. This lends evidence to short sell-

ers’ role in unearthing over-valued stocks and their importance during financially abnormal

times. I then examine the exact effect of short sales on stock prices, especially during the

dot-com bubble and the 2008 financial crisis. I find that short-sale constraints were not cru-

cial to the formation of the dot-com bubble, as the pricing impact of short sales were within

normal range. During the financial crisis, a short-sale ban would significantly inflate stock

prices, especially for large and less profitable firms but not for small firms. This asymmetric

mispricing effect is also reflected in Daniel et al. (2022) who focus on different characteristics

such as momentum. These findings could offer some insight into the debate on the effective-

ness of short-sale policies during an economic bubble (Ofek and Richardson (2003); Battalio
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and Schultz (2006)) or a financial crisis (Battalio et al. (2012); Boehmer et al. (2013)).

Finally, I use the model to investigate the underlying mechanism behind the phenomenon

that dividend-price ratio forecasts future returns in the aggregate stock market, first docu-

mented by Campbell and Shiller (1988b). Using simulated demand, I isolate out the effect

of risk-return balance and that of unobserved preference in the aggregate demand. When

investors are neutral towards aggregate Sharpe ratio, the return predictability of dividend-

price ratio weakens marginally. In contrast, when aggregate latent demand is substituted

with idiosyncratic shocks, dividend-price ratio no long predicts future returns. It is even

more so when both effects are combined. In conclusion, while risk aversion certainly plays a

role (Campbell and Cochrane (1999)), unobserved preference and beliefs about the aggregate

stock market, which nests the theory of Lakonishok et al. (1994), are more likely to be the

main driver of the return predictability of dividend-price ratio.

Related Literature This paper mainly contributes to the literature on asset demand

system. This strand of literature has roots going back to (at least) Brainard and Tobin

(1968) and Tobin (1969). Tobin (1969) emphasizes the importance of interdependencies

across financial markets, which is represented in the aggregate tier of my model. A later

improvement, the Almost Ideal Demand System developed by Deaton and Muellbauer (1980),

extends the model to portfolio choice and characteristics other than returns. However, its

application to portfolio choice has been much less common than in consumption studies.

Recently, due to better availability of holdings data, Koijen and Yogo (2019) have revived this

strand of literature by estimating a characteristics-based demand system in the U.S. stock

market. Demand systems for other asset markets or countries have also been considered,

including U.S. Treasury bonds (Krishnamurthy and Vissing-Jorgensen (2007)), U.S. and

U.K. stocks (Koijen et al. (2019)), euro-area government bonds (Koijen et al. (2021)), and

aggregate global assets (Koijen and Yogo (2020); Gabaix et al. (2022)). This paper extends

the framework of Koijen and Yogo (2019) in at least the following aspects. (i) I jointly model

the demand for asset classes and individual assets, which endogenizes aggregate allocation

and allows for more flexible substitution patterns within and across asset classes. (ii) I

propose a novel instrument for aggregate estimation and exploit both cross-sectional and

time-series variation. (iii) I quantitatively examine demand-side effects on movements in

both aggregate and individual markets. For example, I investigate the asset pricing impact

of aggregate demand and find that unobserved preference, rather than risk-return trade-off,

is the main driver of the return predictability of dividend-price ratio in the aggregate stock

market. (iv) I incorporate short sellers in the demand system and demonstrate the role of
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short sales in a structural way that accounts for the interaction between the long side and

the short side, which could shed some light on the debates about short-sale policies.

The methodology contribution is connected to the broad set of literature on empirical

asset pricing methods beyond asset demand system. Many focus on the classical risk premi-

um problem, including Fama and MacBeth (1973), Kan and Zhang (1999b), Kan and Zhang

(1999a), Gu et al. (2020) and Giglio and Xiu (2021), while others look at the estimation

and testing of other financial models, including Hansen et al. (1996), Aı̈t-Sahalia and Yu

(2006), Yu (2007) and Cheng et al. (2022). I refer to Campbell et al. (2012) for a more

comprehensive review.

This paper is also related to the literature on the estimation of price elasticities in the

stock market. Besides the demand system approach, many estimate micro-elasticities us-

ing index inclusion induced shocks (e.g., Shleifer (1986); Chang et al. (2015)), trade-level

activities (e.g., Frazzini et al. (2018); Bouchaud et al. (2018)) or mutual fund flows (e.g.,

Lou (2012)). Other studies focus on macro-elasticities on the aggregate level (e.g., Da et al.

(2018); Gabaix and Koijen (2021); Hartzmark and Solomon (2022)). I add to this literature

by jointly evaluating micro- and macro-elasticities implied by the two-tier demand system.

Another relevant line of literature is on the the asset allocation of financial intermedi-

aries (e.g., Daniel et al. (1997); Gompers and Metrick (2001); Basak et al. (2007); Cremers

and Petajisto (2009); Hugonnier and Kaniel (2010); Cuoco and Kaniel (2011); Kacperczyk

et al. (2014); Blume and Keim (2014); Pastor et al. (2020)) and their role in asset pricing

(e.g., Goldman and Slezak (2003); Cornell and Roll (2005); Asquith et al. (2005); Kaniel

and Kondor (2013); Basak and Pavlova (2013); Vayanos and Woolley (2013); Koijen (2014);

He et al. (2017); Drechsler et al. (2018); Breugem and Buss (2018);Buffa and Hodor (2018);

Gabaix and Koijen (2021); Dou et al. (Forthcoming)). These studies investigate the as-

set pricing implications of various aspects of intermediaries, including relative-performance-

based compensation of managers, index-tracking restrictions, leverage ratio, and common

flow risks. My paper also connects to the literature on the role of short sales with respect to

return anomalies, bubble formation and stock valuation (e.g., Geczy et al. (2002); Ofek and

Richardson (2003); Battalio and Schultz (2006); Haruvy and Noussair (2006); Stambaugh

et al. (2012); Battalio et al. (2012); Boehmer et al. (2013); Avramov et al. (2013); Beber and

Pagano (2013); Drechsler and Drechsler (2014); Daniel et al. (2022)). The primary short-

coming of these strands of literature is the difficulty of distinguishing which channel(s) are

actually taking effect and how to quantify them due to the nature of reduced-form methods.

By using a fully developed demand system, I provide a structural and quantitative frame-
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work to examine how different aspects of institutional demand and short sales explain the

observed phenomena in the stock market.

The remainder of this paper is organized as follows. Section 2 develops the two-tier

asset demand system and discusses the implied demand elasticities and how market clear-

ing determines asset prices. Section 3 describes the data on asset characteristics, aggregate

Sharpe ratio and institutional holdings. Section 4 explains the identifying assumptions and

estimation procedure and presents the estimates of the two-tier demand system. Section 5

illustrates the empirical relevance of the demand system and investigates the role of institu-

tional demand and short sales. Finally, Section 6 concludes.

2 Two-Tier Asset Demand System

I propose a two-tier asset demand system, where long investors and a representative short

seller allocate their capital among a risk-free bond and many risky assets. The portfolio

demand employs the nested logit model of McFadden (1981) and Cardell (1997), which nests

the characteristics-based demand of Koijen and Yogo (2019) as a special case. The weight

of the risky asset class depends on the aggregate market conditions and the diversification

value of risky assets, whereas the conditional weight of each individual risky asset within the

class is determined by the investor’s taste in asset characteristics.

2.1 Assets and Investors

In the entire investment universe, there are N + 1 financial assets indexed by n = 0, 1, ..., N ,

which fall into two classes. One is the risk-free bond indexed by n = 0, and the other is

the risky asset class, indexed by n = ∗, which covers assets 1 − N . For individual asset

n, denote P n
t and Qn

t as the price per share and the number of the shares outstanding at

time t. MEn
t is the corresponding market equity. The market equity of the aggregate risky

asset market is defined as the total market value of all individual risky assets. Following the

pricing methodology of many established stock market indices (e.g., S&P 500), I define the

aggregate price of the risky asset class as

P ∗t =

∑
n>0 P

n
t Q

n
t

Divisor
(1)

where the divisor is set to ensure a fixed supply in the aggregate risky asset market.
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Let lowercase letters be the logarithm of the corresponding uppercase variables. That is,

pnt = log(P n
t ), qnt = log(Qn

t ), and ment = log(MEn
t ).

The financial assets are differentiated along two sets of characteristics. The first set,

denoted as ynt , n = 0, ∗, includes the aggregate market conditions, which are commonly

shared within an asset class. The second set, denoted as xnt , n = 1, ..., N , includes asset-

specific characteristics for individual risky assets. In the case of stocks, for example, ynt could

include aggregate Sharpe ratio, whereas xnt could include fundamentals such as market equity,

book equity and profitability. Section 3 provides a detailed description of the characteristics.

I denote the k-th element of the characteristics vectors as ynk,t and xnk,t, and let yn0,t and xn0,t

be the constant for convenience. Following the literature on asset pricing in endowment

economies (Lucas (1978)), I assume that shares outstanding and characteristics other than

aggregate Sharpe ratio and market equity are exogenous.

All assets are held by I + 2 investors. A representative specialized short seller, indexed

by i = −1, performs short sales, while the other investors only hold long positions. Investors

i = 1, ..., I are financial institutions, grouped into six types including banks, insurance

companies, investment advisors, mutual funds, pension funds, and other institutions (see

Section 3 for more detail). The remaining assets are held by the household sector, indexed

by i = 0.

2.2 Nested Logit Demand

Drawing inspiration from the nested logit model, I decompose asset demand into two tiers.

For investor i at time t, in the first tier, they distribute their total wealth Ai,t between

different asset classes. Denote the total investments in risk-free bonds and risky assets as

A0
i,t and A∗i,t respectively. In the second tier, the investor forms their conditional portfolio

across individual risky assets that are in their investment universe Ni,t ⊂ 1, ..., N . Denote the

dollar investment in individual risky asset n as An
i,t. This process is not necessarily executed

sequentially. On the contrary, diversification within the second tier inversely affects first-tier

demand as shown later. From the perspective of the discrete choice literature, each investor

at each time can be viewed as a market and the portfolio weights can be viewed as the market

shares of assets. The adoption of the nested logit model emphasizes the distinct difference

between risk-free bonds and risky assets and allows for a more flexible substitution pattern

across assets.

Note that the notion of investment universe Ni,t is necessary because investors typically

do not have full access to all risky assets either due to investment mandates, client restrictions
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or management style. Here, I assume asset 1 is a base risky asset that all investors have

access to, i.e., 1 ∈ Ni,t. And let |Ni,t| be the number of risky assets that are available to

investor i at time t.

For the second-tier demand, I adopt the characteristics-based approach for portfolio

choice (e.g., Lynch (2001); Brandt et al. (2009); Koijen and Yogo (2019)), in order to mod-

el individual asset differentiation and focus on estimating demand with a large number of

assets. This approach directly models the portfolio weight of each risky asset as a func-

tion of asset characteristics. The basic idea is that asset characteristics are closely related

to asset returns and variances and sufficiently capture the joint distribution. Compared to

the traditional Markowitz and utility maximization approach, which are mainly theoretical

frameworks involving a practically unmanageable number of higher moments and featuring

unreliable guidance on real-time investment, the characteristics-based approach is likely a

more relevant and stable approximation to the portfolio choice behavior in practice (Brandt

and Santa-Clara (2006); Brandt et al. (2009)). In fact, Koijen and Yogo (2019) provide a

heuristic argument to justify the approximate equivalence between the Markowitz approach

and the characteristics-based approach. Therefore, following the characteristics-based ap-

proach, I model the relative weights among individual risky assets for investor i at time t

as

wn
i,t

w1
i,t

=
w

n|∗
i,t

w
1|∗
i,t

=δni,t, n ∈ Ni,t − {1}

= exp

(
β0,i,t + β1,i,tme

n
t +

∑
k≥2

βk,i,tx
n
k,t

)
ξni,t (2)

where wn
i,t = An

i,t/Ai,t is the actual portfolio weight of asset n, and w
n|∗
i,t = An

i,t/A
∗
i,t is the

conditional portfolio weight of asset n within the risky asset class. Equation 2 highlights that

the relative demand for individual risky assets depends on asset characteristics xnt including

price (log market equity) and asset-specific latent demand ξni,t. Let δ1i,t = 1 for notation

convenience. Then, combined with the budget constraint, Equation 2 implies the conditional

weights of risky asset n depend on observed characteristics and unobserved residual demand

of all risky assets
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w
n|∗
i,t =

δni,t∑
n∈Ni,t

δni,t
(3)

These conditional weights are what Koijen and Yogo (2019) refer to as characteristics-

based demand, which solely depend on asset-specific components and resemble the form of

market shares in a logit model (Rosen (1974)). Therefore, the nested logit model nests the

system of Koijen and Yogo (2019) as a special case and is a natural extension from the

second-tier demand to the first-tier demand. It allows me to model the distinction between

risk-free bonds and risky assets and to differentiate the substitution patterns within and

across asset classes. The basic idea is that investors allocate their capital between asset

classes based on the aggregate condition of each market and the overall investment value of

individual assets within each market. Specifically, the relative portfolio weight of the risky

asset class to the risk-free bond is

w∗i,t
w0

i,t

=δ∗i,t = exp

(
α0,i,t + α1,i,tSRt +

∑
k≥2

αk,i,ty
∗
k,t + θΓ∗i,t + ξ̃∗i,t

)
(4)

Γ∗i,t = log

( ∑
n∈Ni,t

δni,t

)
(5)

Equation 4 illustrates that the portfolio weight of the risky asset class depends on the

market conditions y∗t including aggregate Sharpe ratio, the composite value Γ∗i,t from the

second-tier demand and the aggregate latent demand ξ̃∗i,t. A key property of this model

is the fact that the total latent demand of individual risky assets is decomposed into a

common aggregate component ξ̃∗i,t in Equation 4 and a residual asset-specific component ξni,t

in Equation 2. The two are assumed to be orthogonal to each other in the model, which

is one of the key identification assumptions utilized by the estimation procedure discussed

in Section 4. This decomposition highlights the advantages of the nested logit model by

allowing co-movement among demand for individual risky assets while also separating the

two-tier demand, which enriches the structure and simplifies the estimation.

The value Γ∗i,t, which I call the diversification value of the risky asset class, is an important

contribution of the nested logit model. It tightly connects the first-tier demand and the

second-tier demand and the coefficient θ ∈ (0, 1) governs the substitution pattern across asset

classes. Mathematically, Γ∗i,t is the “inclusive value” of the risky asset class in the nested logit
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model, which measures the expected maximum utility attained from risky assets and links

portfolio weights within and outside of an asset class. Intuitively, it is a composite index of

demand for individual risky assets, which captures the gains from strategically diversifying

investments within the risky asset class according to the investor’s personal preference over

different characteristics. It closely relates to measures of portfolio diversification in previous

literature. Goetzmann and Kumar (2008), Ivkovic et al. (2008) and Pollet and Wilson (2008)

use the number of stocks in the portfolio to measure diversification, while Blume and Friend

(1975) and Pastor et al. (2020) use the deviation of portfolio weights from the market. The

nested logit measure of diversification incorporates both aspects, because the number of

available assets and deviation from the market to suit the investor’s preference both increase

this value.

Equation 4, combined with the budget constraint, gives the portfolio weight of each asset

class at time t

w∗i,t =
δ∗i,t

1 + δ∗i,t
, w0

i,t =
1

1 + δ∗i,t
(6)

Finally, the overall portfolio weight of individual risky asset n is given by

wn
i,t =w∗i,t · w

n|∗
i,t

=
δ∗i,t

1 + δ∗i,t
·

δni,t∑
n∈Ni,t

δni,t
(7)

which depend on the aggregate decision between risk-free bonds and risky assets and the

preference across individual risky assets.

2.3 Short Sellers and Market Clearing

To complete the demand system, I model a separate representative short seller, partly due to

the tractability of the model and the limited availability of short interest data. Additionally,

short sellers are mainly specialized hedge funds with a primary focus on short sales, and

they are unlikely to be households, banks, insurances, or mutual funds. As An et al. (2021)

point out, these investors shy away from short sales for various reasons, which include but

are not limited to regulatory constraints, client restrictions, lack of short-selling talent and

experience, large marginal costs and risks of short selling, volatile flows and flow-induced
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liquidation costs, and low benchmark-adjusted returns.

Specifically, the representative short seller is modelled similarly to the long investors.

The major difference is that, instead of allocating their wealth between the risk-free bond

and risky assets, the short seller has zero total wealth. Consequently, they short sell risky

assets and invest all proceedings in the risk-free bond. Given total short positions taken on

risky assets, the conditional portfolio weights still follow the characteristics-based demand

(Equations 2 and 3). However, the capital invested in the risk-free bond and risky assets

satisfies A0
−1,t = −A∗−1,t, which is modelled as

A∗−1,t =− exp

(
α0,−1,t + α1,−1,tSRt +

∑
k≥2

αk,−1,ty
∗
k,t + θ−1Γ

∗
−1,t + ξ̃∗−1,t

)
(8)

where Γ∗−1,t = log(
∑

n∈N−1,t
δn−1,t) is the diversification value of risky assets for short

sellers, parallel to that of a long investor. Equation 8 specifies that, to accommodate zero

total wealth of short sellers, the total capital from short sales (rather than the relative

weight of long positions on risky assets) depends on the aggregate market conditions and

the diversification value.

With the short sellers, I can complete the two-tier asset demand system. Let the bold

letter pt be the (N − 1) × 1 stacked log price vector of individual risky assets excluding

the base risky asset n = 1. Then, the market clearing conditions for individual risky asset

n = 1, ..., N are

MEn
t =

I∑
i=0

Ai,t · w∗i,t(SRt,pt) · wn|∗
i,t (pt) + A∗−1,t(SRt,pt) · wn|∗

−1,t(pt) (9)

where I define w
n|∗
i,t = 0 when asset n is not in investor i’s investment universe Ni,t for

notational convenience. By the budget constraints, market clearing for the risk-free bond

and the aggregate risky asset market are automatically satisfied

ME∗t =
I∑

i=0

Ai,t · w∗i,t(SRt,pt) + A∗−1,t(SRt,pt) (10)

Essentially, the market clearing states that the market equity of each asset must equal the

total capital invested in said asset across all investors’ portfolios. Equation 9 demonstrates
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that a shock to individual asset demand could impact asset prices through two channels. The

first channel can be viewed as a substitution effect. When the demand shock changes the

relative taste among risky assets, the investor tilts their conditional portfolio within the risky

asset class towards more desirable assets through w
n|∗
i,t . The second channel can be viewed

as a wealth effect. As the demand shock affects the diversification value of the risky asset

class, the investor redistributes the total capital allocated to the risky asset class through

w∗i,t.

Note that market clearing 9 is a system of N equations in aggregate Sharpe ratio and N

asset prices. In Section 5, I solve market clearing conditional on aggregate Sharpe ratio so

that the system is exactly determined.

2.4 Demand Elasticities

The nested logit demand system provides a straightforward way to compute demand elastic-

ities, allowing for a more flexible substitution pattern compared to the characteristics-based

demand system of Koijen and Yogo (2019).

For long investor i ≥ 0, let a∗i,t = log(Ai,tw
∗
i,t) be the log demand of the risky asset

class implied by the two-tier demand system, and let ai,t = log(Ai,tw
∗
i,tw

·|∗
i,t) be that of

individual assets with strictly positive holdings in their investment universe excluding the

base risky asset n = 1. Similarly, define log short position a−1,t = log(|A∗−1,t|) and a−1,t =

log(|A∗−1,t|w
·|∗
−1,t) for the short seller. Then, the demand elasticities with respect to individual

asset prices are

∂a∗i,t
∂p′t

=θβ1,i,t(1− w∗i,t)w
·|∗
i,t

∂a∗−1,t
∂p′t

=θ−1β1,−1,tw
·|∗
−1,t (11)

∂ai,t

∂p′t
=β1,i,t diag(w

·|∗
i,t)
−1
(

(θ(1− w∗i,t)− 1)w
·|∗
i,tw

·|∗′
i,t + diag(w

·|∗
i,t)

)
∂a−1,t
∂p′t

=β1,−1,t diag(w
·|∗
−1,t)

−1
(

(θ−1 − 1)w
·|∗
−1,tw

·|∗′
−1,t + diag(w

·|∗
−1,t)

)
(12)

which depend on preference over market equity β1,i,t, preference over diversification value

θ (which also governs the substitution pattern among asset classes) and current portfolio

weights.

The demand elasticities with respect to aggregate Sharpe ratio are
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∂a∗i,t
∂SRt

=
∂ani,t
∂SRt

= α1,i,t(1− w∗i,t)

∂a∗−1,t
∂SRt

=
∂an−1,t
∂SRt

= α1,−1,t (13)

which depend on investor preference α1,i,t and the current portfolio weight of the risky

asset class.

Clearly, the demand elasticities vary across different investors, therefore accommodating

heterogeneous substitution patterns. For the aggregate log demand a∗t = log(
∑I

i=−1A
∗
i,t)

and ant = log(
∑I

i=−1A
n
i,t), the corresponding elasticities are simply the holdings-weighted

average of investor-specific elasticities.

3 Data

3.1 Asset Characteristics

Form 13F requires that institutional investment managers report holdings on “section 13F

securities”, which are largely comprised of equity securities that trade on an exchange (e.g.,

NYSE, AMEX, NASDAQ). Other reportable assets include certain equity options and war-

rants, shares of closed-end investment companies, shares of ETFs, and certain convertible

debt securities. Because the equity securities of the CRSP-Compustat universe account for

approximately 75% of 13F securities in the sample from 1980 to 2019, I focus my analysis

on stocks and define the remaining assets and stocks with missing characteristics as the base

asset 1 in the risky asset class.

The data on stock prices, dividends, returns, and shares outstanding are from the Cen-

ter for Research in Security Prices (CRSP) Monthly Stock Database. In the case of missing

CRSP data, the Thomson Reuters Institutional Holdings Database (s34 file) is used as an al-

ternative source of data on stock prices and shares outstanding. The two databases generally

agree among their shared coverage, but if not, I prioritize the CRSP data. Accounting data

are from the Compustat North America Fundamentals Annual and Quarterly Databases.

Following standard practice, I merge the two datasets according to the CRSP/Compustat

Merged (CCM) link table and ensure that the accounting data were public on the trading

date.

Building on the literature (Fama and French (1992); Hou et al. (2015); Koijen and
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Yogo (2019)), asset characteristics xt in my specification include log market equity, log

book equity, profitability, investment, dividends to book equity, and market beta. This

set of characteristics is highly relevant in the context of asset demand, generates sufficient

explanatory power in the cross sections of returns, and does not prompt major issues of

overfitting.

I construct the characteristics following Fama and French (2015), which I briefly summa-

rize here. A more detailed description can be found in Appendix A. Profitability is computed

as operating profits over book equity. Investment is the annual log growth rate of assets.

Dividends to book equity is the ratio of annual dividends per split-adjusted share times

shares outstanding to book equity. Market beta is estimated via a 60-month rolling window

regression of monthly excess return onto market excess return, where the data on risk-free

rate and market excess return are from the Kenneth R. French Data Library. For each time

period, I winsorize profitability, investment, and market beta at 2.5% and 97.5% to remove

extreme outliers. Similarly, the non-negative dividends to book equity ratio is winsorized at

97.5%.

3.2 Aggregate Conditions

Aggregate-level data are from basic economics databases including the U.S. department of

treasury, Federal Reserve Economic Data (FRED), and Kenneth R. French Data Library.

In my specification, I only include the market Sharpe ratio (and a constant) in the set of

aggregate market conditions, as it is the most pertinent and impactful (Campbell (2017);

Gabaix and Koijen (2021)). I leave other market condition variables for future research to

avoid an overly complex model and focus on the effect of Sharpe ratio.

I construct the aggregate Sharpe ratio following Whitelaw (1994) and Tang and Whitelaw

(2011), with a GARCH(1,1) estimation on monthly market excess return from 1953 to 2019.

The explanatory variables in the mean equation include Baa-Aaa spread, the dividend yield,

the one-year Treasury yield and lagged market excess return. The explanatory variables

in the variance equation include the one-year Treasury yield and the commercial paper-

Treasury spread. I also compute the market Sharpe ratio directly using a 30-month rolling

window. The two measures provide similar estimates, where the conditional Sharpe ratio

has an average of 18.8% with a standard deviation of 18.1% and the rolling Sharpe ratio

has an average of 18.4% with a standard deviation of 21.3%. The ex-post unconditional

Sharpe ratio in the sample is 14.4%, which is lower than the average conditional Sharpe

ratio due to Jensen’s inequality. Note that these Sharpe ratios are of monthly frequency and
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the corresponding quarterly Sharpe ratio can be obtained by multiplying
√

3.

3.3 Institutional Holdings

The data on institutional holdings are from the Thomson Reuters Institutional Holdings

Database (s34 file), which are compiled from the quarterly filings of SEC Form 13F. The full

sample covers from 1980q1 to 2019q4. Another possible source is the FactSet 13F Dataset,

which I do not use due to its limited time coverage. Form 13F requires investment managers

whose total assets under management exceed $100 million in market value to disclose long

positions on reportable securities. Therefore, I do not have data on institution-level short

positions. Instead, short interest data are from Compustat North America Supplemental

Short Interest File, which covers stock-level aggregate short positions.

I group institutions into six types based on the SEC reports: banks, insurance companies,

investment advisors (including hedge funds), mutual funds, pension funds, and other 13F

institutions (e.g., endowments, foundations, and nonfinancial corporations). Besides the 13F

institutions and short sellers, I define the household sector as the aggregate investor who

holds the residual shares between total shares outstanding and the sum of shares held by

other investors. I also include in the household sector any institution with less than $10

million of total investment in risky assets, no base risky asset, or no risky assets other than

the base asset in the investment universe. Therefore, the household sector represents direct

household holdings and small institutional investors.

I merge the institutional holdings data with the asset characteristics data by CUSIP

number. I compute each investor’s total investment in risky assets as the total market

value of risky assets held by them. The conditional portfolio weights within the risky asset

class is the market value of individual asset holdings over total investment in risky assets.

An investor’s active share is computed as the sum of the absolute deviation of conditional

portfolio weights from the market-weighted portfolio within their investment universe, which

is then divided by 2, as in Gabaix and Koijen (2021). Finally, following Koijen and Yogo

(2019), I define the investment universe for each investor as all risky assets that they currently

hold or have ever held in the previous 11 quarters. As Koijen and Yogo (2019) note, for the

median institution, 94% of assets that are currently held were also held in the previous 11

quarters and going further back does not substantially increase the percentage. In Appendix

A, I provide a detailed summary of the 13F institutions in the sample.
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4 Estimating the Two-Tier Demand System

The literature on nested logit models has theoretically examined a two-step estimation pro-

cedure (Domencich and McFadden (1975); Amemiya (1978); McFadden (1981)) and im-

plemented the procedure extensively in practice (Dubin (1986); Falaris (1987); Forinash

and Koppelman (1993)). Building on that, I propose a two-step identification strategy to

consistently estimate the two-tier asset demand system. In the first step, I estimate the

second-tier demand within the risky asset class (Equation 2) based on conditional portfolio

weights and an improved instrument from Koijen and Yogo (2019). In the second step,

inspired by Gabaix and Koijen (2021), I log-linearize the first-tier demand between asset

classes (Equation 4) to circumvent the obstacle posed by unavailable risk-free holdings data.

Then, I utilize the estimated asset-specific latent demand from the first step to construct

valid instruments for the aggregate panel estimation. This two-step procedure allows me to

exploit both cross-sectional and time-series variation in a dynamic setting.

4.1 Demand within the Risky Asset Class

For the second tier of the demand system, I estimate the demand within the risky asset class

through the following equation

w
n|∗
i,t

w
1|∗
i,t

= exp

(
β0,i,t + β1,i,tme

n
t +

∑
k≥2

βk,i,tx
n
k,t

)
ξni,t n ∈ Ni,t − {1} (14)

where the asset-specific latent demand ξni,t could be of value zero to accommodate zero

holdings and is normalized to have mean 1 so that β0,i,t is identified. Because I retain from

literature the assumption that characteristics other than price are exogenous, Equation 14

can thus be interpreted as a non-linear regression model with all exogenous explanatory

variables but one, i.e., log market equity ment .

To deal with the endogeneity issue, Koijen and Yogo (2019) propose the following instru-

ment

m̂eni,t = log

(∑
j 6=i

A∗j,t
1{n ∈ Nj,t}∑N

m=1 1{m ∈ Nj,t}

)
(15)

where A∗j,t is investor j’s total investment in risky assets, and 1{m ∈ Nj,t} indicates
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whether asset m is inside investor j’s investment universe at time t. This measure solely

depends on the investment universe of other investors and the distribution of total risky

capital, both of which are exogenous under their identifying assumptions. The arguments

for the exogeneity of investment universe still hold true in this paper. In practice, investment

mandates usually dictate investors’ investment universes. These are predetermined rules on

assets that fall into investment managers’ choice set, may they be regulation constraints,

client restrictions, investment styles, or index tracking restraints. Therefore, I maintain the

assumption of exogenous investment universe.

However, total investment in risky assets for the current period A∗i,t, which Koijen and

Yogo (2019) refer to as total wealth, is endogenized in the two-tier demand system. Latent

demand shocks affect diversification value, which in turn has an impact on the total capital

invested in the aggregate risky asset market. For this exact reason, I employ an improved

version of the above instrument, substituting current investment in risky assets with average

past investment in risky assets

m̃eni,t = log

(∑
j 6=i

Ã∗j,t
1{n ∈ Nj,t}∑N

m=1 1{m ∈ Nj,t}

)
(16)

where Ã∗j,t = 1
K

∑K
k=1A

∗
j,t−k is the average past investment in risky assets. I choose K = 3

when estimating, because a small K might retain a strong correlation with current invest-

ment in risky assets, while a large K could diminish the relevance of the instrument. I argue

that Equation 16 is a valid instrument for market equity. First, asset-specific latent demand

ξni,t only affects the portfolio weight of the risky asset class in current period t but not in pre-

vious periods. Using past values reduces the endogenous correlation. Second, I compute the

moving average of past investments in risky assets to extract the low-frequency component

that is plausibly exogenous to asset-specific demand shock at current time, especially con-

sidering that Gabaix and Koijen (2021) observe institutions often have quite stable portfolio

weights on risky stocks. Hence, Equation 16 can be viewed as the counterfactual market

equity if other investors hold a stable weight of risky assets and allocate risky investments

equally within their investment universe. It exploits the fact that an asset accessible to more

and larger investors has a larger exogenous component of demand.

With the improved instrument, the identifying assumptions for Equation 14 become
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E[ξni,t|m̃e
n
i,t, x̃

n
t ] = 1 (17)

where x̃nt includes characteristics other than log market equity.

Finally, with regard to some implementation issues, I follow the suggestions of Koijen

and Yogo (2019). (i) I refine the instrument to be more robust by excluding households

and short sellers and aggregate only over institutions with little variation in the investment

universe, for which at least 95% of assets that are currently held were also held in the previous

11 quarters. (ii) I pool institutions with fewer than 1,000 holdings with similar institutions

based on type and total investment in risky assets to estimate their coefficients. (iii) I restrict

the coefficient on log market equity of long investors to be less than 1 to guarantee a unique

equilibrium defined by market clearing.

4.2 Demand between Asset Classes

For the demand between asset classes of long investors (i ≥ 0), I start from the following

equation inferred from the model (see Equation 4)

P ∗t Q
∗
i,t

A0
i,t

=
w∗i,t
w0

i,t

= exp

(
α0,i,t + α1,i,tSRt + θΓ∗i,t + ξ̃∗i,t

)
(18)

where P ∗t is the aggregate price of the risky asset class, Q∗i,t is the effective number of

shares of the aggregate risky asset market held by investor i, and A0
i,t is the risk-free bond

holdings. An immediate challenge I encounter when estimating Equation 18 is the lack of

access to institutional risk-free holdings. That is, I do not have data on A0
i,t. Unlike the

regulations on public equity holdings which require comprehensive reporting by 13F insti-

tutions, regulations on public bond holdings typically do not require disclosure of holdings

or trades. The exceptions to this rule are the bond holdings of insurance companies, which

must be disclosed to the National Association of Insurance Commissioners in Schedule D

filings, and the bond holdings of selected investment managers (certain mutual funds and

pension funds), which must be disclosed to the SEC.

These data, albeit valuable for other studies, do not help with the estimation in the

context of an asset demand system including all investors. Therefore inspired by Gabaix

and Koijen (2021), instead of directly estimating Equation 18, I apply a log-linearization
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which allows me to bypass the need for risk-free holdings data and estimate the parameters

of interest only using data on the aggregate risky asset market.

To log-linearize the actual demand equation, consider a simpler “baseline” economy,

which is on a balanced growth path. Let P̄ ∗t , Q̄
∗
i,t, Ā

0
i,t, Āi,t be the baseline aggregate price,

number of shares of the aggregate risky asset market held by investor i, risk-free bond

holdings, and total wealth of investor i. Then, with no demand shocks, the baseline portfolio

weights of investor i can be expressed as

P̄ ∗t Q̄
∗
i,t

Ā0
i,t

= exp

(
α0,i,t + α1,i,tSR + θΓ̄∗i

)
(19)

where SR and Γ̄∗i are respectively the baseline aggregate Sharpe ratio and diversification

value of the risky asset class, which would be constant in a balanced economy and can be

interpreted as the corresponding long-term averages in the real economy.

From the baseline portfolio weights, two types of shocks occur, and investors shift their

holdings accordingly to realize the actual weights. One is demand shocks, which deviate

asset prices from baseline, and the other is an unexpected inflow shock to the investor’s

total wealth Āi,t. That is, before the shocks, investor i allocates their wealth between the

asset classes with baseline weights and satisfies the budget constraint Āi,t = P̄ ∗t Q̄
∗
i,t + Ā0

i,t.

Then shocks strike, and, before the investor makes any adjustment to their holdings, the

budget becomes Ai,t = P ∗t Q̄
∗
i,t + Ā0

i,t + Fi,t, where Fi,t is an unexpected inflow into investor

i’s total wealth. Faced with deviated prices and total wealth, investor i eventually adjusts

their holdings following Equation 18 with the actual budget constraint Ai,t = P ∗t Q
∗
i,t + A0

i,t.

Therefore, dividing Equation 18 by Equation 19, the demand between asset classes can

be expressed in terms of deviation from baseline

(1 + ∆p∗t )(1 + ∆q∗i,t) =(1 + ∆a0i,t) exp

(
α̃0,i,t + α1,i,tSRt + θΓ∗i,t + ξ̃∗i,t

)
where ∆p∗t = (P ∗t − P̄ ∗t )/P̄ ∗t , ∆q∗i,t = (Q∗i,t − Q̄∗i,t)/Q̄∗i,t, ∆a0i,t = (A0

i,t − Ā0
i,t)/Ā

0
i,t are the

percentage deviation from baseline, and α̃0,i,t = −α1,i,tSR − θΓ̄∗i . Plugging in the budget

constraints Ai,t = P ∗t Q̄
∗
i,t + Ā0

i,t + Fi,t and Ai,t = P ∗t Q
∗
i,t +A0

i,t and log-linearizing around the

baseline economy, investor i’s demand change follows
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∆p∗t +Mi,t∆q
∗
i,t =α̃0,i,t + α1,i,tSRt + θΓ∗i,t + ξ̄∗i,t (20)

where Mi,t = 1 + exp(α0,i,t + α1,i,tSR+ θΓ̄∗i ) partially corresponds to the price multiplier

in Gabaix and Koijen (2021) whose reciprocal measures the elasticity in the aggregate risky

asset market, and ξ̄∗i,t = ξ̃∗i,t +Fi,t/Ā
0
i,t is the approximate aggregate latent demand. Because

Equation 20 is expressed in terms of risky assets holdings rather than risk-free bond holdings,

the equation is estimable empirically with valid instruments. In practical implementation,

I compute the percentage deviation ∆p∗t and ∆q∗i,t as the percentage deviation from the

previous period following Gabaix and Koijen (2020), and winsorize ∆q∗i,t at 1% and 99% to

minimize the impact of extreme outliers. I also parameterize the coefficients Mi,t, α̃0,i,t and

α1,i,t as functions of a linear combination of the investor’s characteristics. Per suggestion

of Gabaix and Koijen (2021), an investor’s characteristics include average past active share,

which is a measure of the activeness of management; the log of average past investment in

risky assets, which is a measure of size; and the investor’s type.

Now, the lone obstacle to estimation is the endogeneity of prices. In the two-tier demand

system, the aggregate latent demand ξ̃∗i,t partially determines both asset prices and aggregate

Sharpe ratio in the equilibrium. Therefore, I need instruments for both of these variables,

as well as the diversification value Γ∗i,t which is also a function of individual asset prices.

Exploiting the fact that asset-specific latent demand ξni,t is, by assumption of the model,

orthogonal to the aggregate latent demand ξ̃∗i,t, I can therefore construct valid instruments

based on ξni,t from the first step of estimation. I propose the following two instruments for

estimating Equation 20

z̃i,t =
∑

n∈Ni,t−{1}

wn
m,i,t log ξni,t (21)

z̃t =
I∑

i=1

Si,t−1z̃i,t (22)

where wn
m,i,t =

MEn
t−1∑

n∈Ni,t−{1}
MEn

t−1
is the market weights of risky assets inside investor i’s

investment universe at time t, and Si,t−1 =
A∗i,t−1∑
i A
∗
i,t−1

is the market share of risky assets held

by investor i at time t− 1.

Theoretically, other functions of asset-specific latent demand could also be valid instru-
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ments because of the imposed orthogonality. I specifically employ the weighting scheme

in Equations 21 and 22 to enhance the relevance of the instruments and address possible

weak instrument issues. The idea is similar to the granular instrumental variable of Gabaix

and Koijen (2020). Asset-specific demand shock of investors with larger market share and

of assets with larger market equity would have a larger exogenous impact on equilibrium

prices. Therefore, the above weighting scheme allows me to extract an adequately relevant

component in asset prices that is also exogenous to aggregate demand shock. Analogous to

the construction of m̃eni,t in 16, I refine the instrument z̃t to be more robust by excluding

households and short sellers.

As for the diversification value Γ∗i,t which depends on the risky asset investment diversified

over market equity, other characteristics and asset-specific latent demand, the only endoge-

nous component is the market equity. Therefore, I construct a counterfactual diversification

value that only depends on diversification over characteristics excluding market equity and

asset-specific latent demand

Γ̃∗i,t = log

(
1 +

∑
n∈Ni,t−{1}

exp

(
β0,i,t +

∑
k≥2

βk,i,tx
n
k,t

)
ξni,t

)
(23)

Note that the sole difference between Γ∗i,t and Γ̃∗i,t is that the effect of market equity is

excluded in the proposed instrument Γ̃∗i,t to ensure exogeneity.

Finally, with all the proposed instruments, I can estimate Equation 20 using the panel

of investors with the following identifying assumptions

E[ξ̄∗i,t|z̃t, z̃i,t, Γ̃∗i,t] = 0 (24)

With regard to the short seller, the demand can be directly estimated by Equation 8

using the instruments z̃t and Γ̃∗−1,t proposed above. Notably, as a result of the aggregation of

short positions, total short interest has a clear time trend. To accommodate this observation,

a time variable is added to the constant α0,−1,t in Equation 8 in addition to the investor’s

characteristics. This brings the identifying assumptions to

E[ξ̃∗−1,t|z̃t, Γ̃∗−1,t] = 0 (25)
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To examine the performance of the above proposed instruments and estimation procedure,

I conduct a simulation study in a simplified setting in Appendix B. The results show that

the procedure reliably uncovers all aggregate coefficients in an accurate manner.

4.3 Estimated Two-Tier Demand System

Figure 1 summarizes the coefficients on asset characteristics in the demand within the risky

asset class (Equation 14) from 1981q1 to 2019q4. For each investor type, I report the

cross-sectionally averaged coefficients, weighted by total investment in risky assets. To ease

interpretation, Figure 1 reports the coefficients on log market-to-book ratio β1,i,t and log

book equity β1,i,t + β2,i,t instead of β1,i,t and β2,i,t. Overall, the estimates are reasonably

consistent with Koijen and Yogo (2019) with several notable differences.

Equation 12 implies that the long investor has a less elastic demand as the coefficient

on log market-to-book ratio approaches 1. Therefore, Figure 1 shows that the demand of

mutual funds is less elastic compared to other institutions for most of the sample periods,

while that of investment advisors is among the most elastic. Over time, banks, insurance

companies and pension funds are subject to less elastic demand, contrary to households.

This could result from the fact that financial intermediaries have been growing in size and

their asset management has become more passive and subject to benchmarking in order to

attract a wider range of clientele. For short sellers, the coefficient on log market-to-book

ratio is mostly above 1, highlighting their role in detecting over-valued assets.

The coefficient on log book equity captures the demand for size. Banks, insurance com-

panies and mutual funds have a growing fondness for stocks with larger size, in contrast

with investment advisors and households. This is consistent with the findings of Blume and

Keim (2012) and Koijen and Yogo (2019) that larger institutions tend to hold larger stocks

in their portfolios. Compared to long investors, short sellers prefer large firms, as they have

concluded their high-growth phase.

On average, financial institutions tilt their portfolio more towards stocks with higher

profitability, higher investment, lower dividend to book equity ratio and lower market beta

than households. This reflects the view that intermediaries interpret information differently

and invest in a more calculated way, partially explaining why they have become increasingly

popular. Short sellers, as expected, prefer stocks with low profitability, low investment, low

dividend to book equity ratio and high market beta. And the coefficients on profitability,

dividend to book equity ratio and market beta tend to move in the opposite direction of

long investors, suggesting that demand on the long leg and on the short leg are interlinked.
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Interestingly, short sellers were overly reactive towards dividends in the first half of the

sample compared to the second half, which could be evidence for a transition in short-selling

criteria from a singular criterion based on cash flow to a more diverse taste. Also notably,

investors tend to hold short positions instead of long positions on stocks with higher market

beta during recessions, implying that the demand for market risk is procyclical.

Besides characteristics, an integral part of demand is the latent demand. Figure 2 re-

ports the cross-sectional standard deviation of log asset-specific latent demand by investor

type, weighted by total investment in risky assets. A higher standard deviation implies

more extreme portfolio weights that are tilted away from observed characteristics. Among

institutions, mutual funds have the most extreme portfolios tilted away from observed char-

acteristics, followed closely by insurance companies, investment advisors and banks, while

pension funds have the least variation in latent demand. Households, for most of the sample

periods, tend to condition their demand more intensively on observed characteristics than

institutions. This indicates that intermediaries might have a larger set of information than

observed fundamentals, consistent with the view that some institutions are “smart money”

investors. Finally, short sellers have quite volatile latent demand, which might be a result

of the aggregation of short positions.

As for demand between asset classes, Table 1 and Figure 3 summarize the estimated

coefficients in Equation 20 and the estimated equity weights (i.e., portfolio weights on risky

assets that are mainly equities). Table 1 clearly shows that investors value the diversification

of their portfolios. The coefficient on the diversification value θ is estimated to be 0.06 for

long investors and 0.31 for short sellers, both of which are significant.

In Figure 3, the cross-sectionally averaged coefficients and equity weights are reported

for each investor type, weighted by total investment in risky assets. Mutual funds are

the most reactive towards the aggregate Sharpe ratio, followed by banks and pension funds.

Households, insurance companies and investment advisors are less likely to tilt their portfolios

away from equities based on the market condition. Short sellers, as expected, conduct fewer

short sales when the aggregate stock market is in a good state and equities are expected to

perform well. Over time, short sellers have become more reactive to aggregate Sharpe ratio.

The price multiplier partially measures the demand elasticity in the aggregate market

when holding the Sharpe ratio constant. The average price multiplier across investors and

time is 4.3, which is slightly smaller than Gabaix and Koijen (2021)’s estimate of 5. This

lends further evidence that the aggregate stock market is surprisingly inelastic. However,

different types of investors contribute to the inelastic market to various degrees. Insurance
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companies and mutual funds are among the least elastic, possibly due to their preference for

equities and size-related benchmarking. The other institutions have more elastic demand,

while households are remarkably elastic. It is possible that households, subject to fewer

restrictions and investment objectives, have less transaction cost when redistributing their

wealth among different asset classes.

Consistent with the observation made by Gabaix and Koijen (2021), investors hold a

quite stable equity share out of their total wealth over time. Note that the estimated equity

share only covers equity securities that are directly held by investors and are reportable on

Form 13F. The actual portfolio weight on equities could be higher than depicted in Figure

3. This is especially true for households because only direct holdings by households are used

in the estimation, but they could hold equities indirectly through intermediaries. Despite

this concern, the estimated equity share matches well with the available data on mutual

funds and pension funds. On average, mutual funds and pension funds are estimated to

invest 80% and 67%, respectively, of their wealth in equities. In comparison, data show that

mutual funds hold approximately 82–83% of equities on average, while pension funds hold

approximately 67–68% of equities.

Finally, Table 2 reports the standard deviation and auto-correlation of the estimated

aggregate latent demand by investor type. Compared to asset-specific latent demand, aggre-

gate latent demand has a smaller variation, and the standard deviation is fairly consistent

across different types of long investors. It is also highly auto-correlated, especially for institu-

tions, partly because the aggregate latent demand carries some persistent aggregate factors

or unobserved investor expectations on the stock market. These facts could shed some light

on why institutions hold such a stable equity share.

5 Applications

In the two-tier asset demand system, log prices are entirely determined through market

clearing 9 by an implicit function

pt = g(qt, x̃t,At, αt, βt, ξ̃
∗
t , ξt) (26)

where qt is an (N − 1) × 1 vector of log number of shares outstanding for individual

assets, x̃t is an (N − 1) × (Kx − 1) matrix of asset characteristics other than log market

equity, At is an (I+1)×1 vector of long investors’ total wealth, αt is an (I+2)×3 matrix of
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aggregate coefficients and aggregate Sharpe ratio, βt is an (I + 2)×Kx matrix of coefficients

on asset characteristics, ξ̃∗t is an (I + 2)× 1 vector of aggregate latent demand, and ξt is an

(N − 1)× (I + 2) matrix of asset-specific latent demand.

Equation 26 is repeatedly used in the following four asset pricing applications. First, I

decompose return variance in the stock market into supply- and demand- side effects. Second,

I inspect the connection between institutional demand and common return premiums. Third,

I examine the asset pricing role of short sales by studying the effect of short sales on return

volatility and stock valuation. Finally, I use the model to investigate the underlying channel

of the return predictability of dividend-price ratio in the aggregate stock market.

5.1 Variance Decomposition of Stock Returns

Literature has long asked what contributes to the observed variation in stock returns. The

findings of Fama and MacBeth (1973) suggest stock characteristics are an important source

of variation, while Gompers and Metrick (2001) and Koijen and Yogo (2019) point out that

institutional demand is a key factor in explaining return volatility. Following Koijen and

Yogo (2019), I decompose return variance into supply- and demand-side effects using the

two-tier demand system and attempt to offer some insight. I start with the vector of log

stock returns, defined as

rt+1 = pt+1 − pt + vt+1

where vt+1 = log(1 + exp(dt+1 − pt+1)) and dt+1 is the vector of log dividends per share

at time t+ 1. The capital gain can be decomposed into

pt+1 − pt = ∆p(q) + ∆p(x) + ∆p(A) + ∆p(α) + ∆p(β) + ∆p(ξ̃∗) + ∆p(ξ)

where
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∆p(q) =g(qt+1, x̃t,At, αt, βt, ξ̃
∗
t , ξt)− g(qt, x̃t,At, αt, βt, ξ̃

∗
t , ξt)

∆p(x) =g(qt+1, x̃t+1,At, αt, βt, ξ̃
∗
t , ξt)− g(qt+1, x̃t,At, αt, βt, ξ̃

∗
t , ξt)

∆p(A) =g(qt+1, x̃t+1,At+1, αt, βt, ξ̃
∗
t , ξt)− g(qt+1, x̃t+1,At, αt, βt, ξ̃

∗
t , ξt)

∆p(α) =g(qt+1, x̃t+1,At+1, αt+1, βt, ξ̃
∗
t , ξt)− g(qt+1, x̃t+1,At+1, αt, βt, ξ̃

∗
t , ξt)

∆p(β) =g(qt+1, x̃t+1,At+1, αt+1, βt+1, ξ̃
∗
t , ξt)− g(qt+1, x̃t+1,At+1, αt+1, βt, ξ̃

∗
t , ξt)

∆p(ξ̃∗) =g(qt+1, x̃t+1,At+1, αt+1, βt+1, ξ̃
∗
t+1, ξt)− g(qt+1, x̃t+1,At+1, αt+1, βt+1, ξ̃

∗
t , ξt)

∆p(ξ) =g(qt+1, x̃t+1,At+1, αt+1, βt+1, ξ̃
∗
t+1, ξt+1)− g(qt+1, x̃t+1,At+1, αt+1, βt+1, ξ̃

∗
t+1, ξt)

All counterfactual prices are computed numerically through market clearing 9. Then, I

decompose the cross-sectional variance of log returns as

Var(rt+1) =Cov(∆p(q), rt+1) + Cov(∆p(x), rt+1) + Cov(vt+1, rt+1)

+ Cov(∆p(A), rt+1) + Cov(∆p(α), rt+1) + Cov(∆p(β), rt+1)

+ Cov(∆p(ξ̃∗), rt+1) + Cov(∆p(ξ), rt+1) (27)

The first three terms in Equation 27 capture the supply-side effects arising from changes

in shares outstanding, stock characteristics and the dividend yield. The next term represents

the wealth effect on the demand side due to change in total wealth. The last four terms

reflect the demand-side effects stemming from investors’ taste, including preference between

asset classes and among individual assets.

Table 3 presents the variance decomposition of annual stock returns for the full sample

period from 1982 to 2019 and for the latter half of the sample from 2000 to 2019. Annual

stock returns are calculated at the end of the second quarter, as many firms update their

characteristics in June.

In the full sample, supply-side effects explain 10.7 percent of stock return variation in

total, where shares outstanding, characteristics and dividend yield account for 1.0 percent,

9.2 percent and 0.5 percent respectively. On the demand side, the wealth effect due to change

in total wealth explains 2.5 percent. Interestingly, aggregate preference only accounts for

0.6 percent of return volatility, most of which is due to changes in aggregate latent demand.

This is possibly a result of the low variation and high auto-correlation of aggregate latent

demand, which also explains the stable portfolio weight on equity over time. On the other

27



hand, individual stock preference accounts for a total of 86.2 percent, where only 3.3 percent

is due to changes in coefficients. Asset-specific latent demand is unequivocally the most

significant source of variation in stock returns. The extensive margin, which captures changes

in investment universe, explains 14.0 percent, while the intensive margin, which captures

changes in portfolio weights within the investment universe, explains 69.0 percent.

In comparison, during the post-2000 period, the effect of aggregate preference has more

than doubled, indicating a more flexible demand for equities. Also of interest is that the

wealth effect due to changes in investors’ total wealth has increased sharply. This is consistent

with the rapidly expanding size of institutions and their growing roles in asset pricing.

The variance decomposition provides further support for the findings of Koijen and Yogo

(2019). Observed characteristics have low explanatory power in stock returns. Instead,

investor sentiment and disparity in latent preference is the key source for explaining return

volatility.

5.2 Intermediaries and Return Premiums

Besides return variation, observed anomaly returns have also been of continuous interest in

asset pricing research. Since Fama and French (1992), many characteristics-based premiums

have been studied (e.g., Carhart (1997); Novy-Marx (2013); Fama and French (2015)). One

important question is which return anomalies can be attributed to intermediaries and which

are more fundamentally founded.

I investigate the connection between common characteristics-based premiums and insti-

tutional demand by computing counter-factual return spreads when financial intermediaries

become neutral towards the corresponding characteristics. That is, I impose the correspond-

ing coefficient on the characteristic in Equation 14 to be zero for all institutions. Following

Fama and French (1992) and Fama and French (2015), I sort common stocks traded on

NYSE, AMEX, or NASDAQ into deciles based on said characteristics and compute the

average return spreads between the top decile and the bottom decile. The returns are com-

puted annually from January to December, in accordance with the methodology of Kenneth

R. French Data Library.

Panel A of Table 4 reports the average annual return spreads and the counter-factual

values from 1982 to 2019. In the data, I observe notable premiums for all four characteristics:

size, value, profitability and investment. In contrast, when financial intermediaries cease to

tilt their portfolio based on the corresponding characteristics, size premium and investment

premium can no longer be observed, while value premium is reduced by approximately 40%.
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Profitability premium is largely unaffected both in terms of magnitude and significance.

These results indicate that size premium can be mainly attributed to intermediaries,

which is consistent with the findings of Blume and Keim (2012) that institutions prefer larg-

er firms. For value premium, though institutional demand might be an important factor,

fundamental reasons such as low-frequency cash flow growth, growth opportunities, and ex-

posure to innovation displacement risk, cannot be discounted. Profitability premium does

not arise from institutional demand. A possible explanation for this anomaly return could be

industrial competition proposed by Dou et al. (2021). Finally, intermediaries could account

for the majority of investment premium, as they prefer aggressively expanding firms. Over-

all, these findings could offer some insight into how financial intermediaries contribute to the

return anomalies in the stock market. As intermediaries’ preference over certain character-

istic shifts institutional demand, stock returns adjust accordingly and generate observable

return premiums.

On the other hand, while the literature on return anomalies predominantly focus on

the long leg, several papers have inspected the short leg of returns and attributed several

anomalies, at least partially, to short-sale constraints. For instance, Stambaugh et al. (2012)

show that with short-sale impediments, the short leg of various anomalies are more profitable

following high investor sentiment. Avramov et al. (2013) find that several anomaly returns

are derived from taking short positions in high credit risk firms which they argue may be

hard to short sell, while Drechsler and Drechsler (2014) observe that high short-fee stocks

predominate in the short leg of anomalies and drive their returns. I examine this claim

by computing the counter-factual return spreads when short sales are banned, which are

reported in Panel B of Table 4. The results show that tightening the short-sale constraints

does not generate larger or more significant return premiums, indicating that the short leg

might not be the main driver of observed anomaly returns.

5.3 Role of Short Sales

Economists generally agree on the beneficial role of short sellers for unearthing over-valued

stocks and improving the efficiency of the market. However, there exist several debates on

the exact role of short sales due to conflicting evidence. One debate is on whether short-

sale constraints contributed to the rise of the dot-com bubble. While Ofek and Richardson

(2003) argue short-sale restrictions were crucial for the bubble and Haruvy and Noussair

(2006) demonstrate loosening the restrictions could induce prices to approach fundamental

values, Geczy et al. (2002) and Battalio and Schultz (2006) show that these constraints were
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not binding. Another debate is about the effectiveness of a short-sale ban to inflate stock

prices, especially during a financial crisis, since the SEC issued a temporary shorting ban at

the worst of the 2008 crisis. Boehmer et al. (2013) observe that small-cap stocks were largely

unaffected, whereas large-cap stocks subject to the ban witnessed a jump in price. However,

Battalio et al. (2012) find the ban failed to support stock prices. Beber and Pagano (2013)

study short-sale bans in different countries and find that these bans are not associated with

better performance of stock prices, except possibly for the U.S. financial market.

In light of these diverging views on the actual role of short sales, I conduct three experi-

ments to lend some evidence from the perspective of a demand system. First, I decompose

return variance into long- and short-side effects, in a similar fashion as the first application.

I modify Equation 27 to

Var(rt+1) =Cov(∆p(q) + ∆p(x) + vt+1, rt+1)

+
I∑

i=0

Cov(∆p(Ai) + ∆p(αi) + ∆p(βi) + ∆p(ξ̃∗i ) + ∆p(ξi), rt+1)

+ Cov(∆p(A−1) + ∆p(α−1) + ∆p(β−1) + ∆p(ξ̃∗−1) + ∆p(ξ−1), rt+1)

The first term is the total supply-side effect. The second term is the sum of the demand-

side effects due to all long investors. The third term is the short-side effects. Figure 4 reports

the proportion of cross-sectional return variance explained by the change in short sellers. In

the first half of the sample, short sellers played an insignificant role in explaining variation

in stock returns. Of interest is the time when short sellers first significantly accounted for a

part of return volatility. It coincides with the dot-com bubble, reflecting the active role short

sellers play in uncovering over-valued stocks. In the second half of the sample, the importance

of short sales continues to grow and explains over 4 percent of return variation in 2008. But

following the short-sale ban in September 2008, the impact of short sales temporarily drops,

only to bounce back in 2011. Eventually, it stabilizes at explaining around 3 percent of

return variance as the economy enters a boom.

The variance decomposition highlights the growing importance of short sales, especially

during financially abnormal times. However, it does not tell us how short sales affect the

valuation of stocks. In the second experiment, I investigate the role of short sales and short-

sale constraints during the dot-com bubble by computing counter-factual stock indices in a

world where there is no shorting or more aggressive shorting. In the first case, I remove short

30



sellers from the demand system. In the second case, I allow more aggressive short-selling

activities by increasing the intercept term in Equation 8, in order to imitate the outcome

of a relaxation on short-sale constraints. I consider two scenarios where short sellers are

moderately more aggressive or extremely more aggressive, on average increasing total short

positions by 50 percent or 5 times.

Figure 5 compares the real index values (S&P 500 and overall) and the counter-factual

ones from 1996q1 to 2003q4. Though short sales indeed have an impact on stock prices, it

is within normal range and could not account for the formation of the bubble. Even with

extremely aggressive short-selling activities, the bubble shape still exists. Figure 6 demon-

strates that similar patterns are observed for large stocks and growth stocks, which were

the main components of the bubble shape. Therefore, I conclude that short-sale constraints

were unlikely to be a crucial factor for the dot-com bubble, supporting the findings of Geczy

et al. (2002) and Battalio and Schultz (2006).

In the third experiment, I further examine the price impact of short sales by studying the

repricing effect of a short-sale ban on stocks with different characteristics. Specifically, I sort

stocks into deciles based on each characteristic and evaluate the average change in valuation

for each decile with the following repricing measure revised from Koijen et al. (2019)

RP−1,j =
1

T

∑
t

(∑
n∈Qj

(MEn,CF
t −MEn

t )∑
n∈Qj

MEn
t

)
(28)

where MEn,CF
t is the counter-factual market equity of asset n without short sales, and

Qj denotes the j-th decile. The repricing measures the change in total market equity in each

decile when a short-sale ban is in effect.

Tables 5 and 6 report the average repricing around the 2008 financial crisis and in the full

sample. During the crisis, the short-sale ban significantly inflates stock prices, especially for

large firms, consistent with the observation by Boehmer et al. (2013). However, the repricing

effect on ultra large firms is minimal, likely due to a combination of reasons including higher

resilience towards shorting and the dominating scale of long investors. On the other hand,

the ban undermines the performance of small-cap stocks, implying that short sellers are more

correctional in terms of uncovering over-valued stocks than they are predatory. For book-

to-market ratio, profitability and investment, total market equity increases for every decile

under the short-sale ban. Interestingly, the repricing effect is much more notable for less

profitable stocks, indicating that short sellers target distressed low-profitability firms. These
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repricing effects are also found in the full sample but on a smaller scale. The asymmetry

in repricing on stocks with different characteristics is also reflected in Daniel et al. (2022),

though they focus on price momentum as the main characteristic of interest.

5.4 Return Predictability of Dividend-Price Ratio

Campbell and Shiller (1988b) first document the classic pattern that dividend-price (D/P)

ratio significantly predicts future returns in the aggregate stock market and increasingly so

with longer horizons. Different studies have examined the mechanism behind the return

predictability of dividend-price ratio. Campbell and Cochrane (1999) show that the effective

risk aversion captured by their consumption surplus utility provides grounds for the connec-

tion between dividend-price ratio and expected returns, while Lakonishok et al. (1994) find

that irrational forecast on long-run cash flow growth is the essential link. I investigate the

connection between the return predictability of dividend-price ratio and aggregate demand

by re-inspecting this predictability pattern with simulated asset demand.

In the first simulation, I set α1,i,t = 0 in Equation 18 so that investors are neutral towards

aggregate Sharpe ratio. This allows me to study how investors’ overall preference between

risk and return affects the relationship between dividend-price ratio and future returns.

In the second simulation, I replace aggregate latent demand ξ̃∗i,t with idiosyncratic normal

shocks of the same volatility to eliminate any effect of unobserved beliefs, including irrational

forecast on long-run cash flow growth. Finally, I impose both constraints to examine the

combined effects. In each case, I compute the log excess return and log dividend-price ratio

of the value-weighted market portfolio. I then inspect the return predictability of dividend-

price ratio with regressions of future log excess return on log dividend-price ratio.

Table 7 reports quarterly regression results from 1982q2 to 2019q4 with real and simulat-

ed data. The predictability pattern in Campbell and Shiller (1988b) is revealed in the actual

data: a high dividend-price ratio is associated with high expected returns, and the scale and

significance of the coefficient rise to an impressive level with long horizons. When investors

become neutral towards the aggregate Sharpe ratio, the predictability weakens marginally

and the magnitude of the coefficients remains unchanged. In comparison, eliminating the

effect of aggregate latent demand dilutes the predictability markedly and shrinks the coeffi-

cients towards zero. The combined effect is even more prominent, with the second channel

accounting for the bulk of it.

This comparison offers some insight into the the mechanism behind the return predictabil-

ity of dividend-price ratio. Though risk-return balance certainly plays a role, unobserved
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preference and subjective beliefs about the aggregate stock market should be recognized as

the main driver. Therefore, the theory of irrational forecast on long-run cash flow growth

proposed by Lakonishok et al. (1994) provides a more plausible explanation for the tight link

between dividend-price ratio and future returns.

6 Conclusion

I develop a two-tier asset demand system that incorporates endogenous aggregate allocation

and short sales. The framework nests characteristics-based individual asset demand within

the demand for different asset classes and allows for a more flexible substitution pattern

across assets. I also propose a two-step estimation procedure with a novel instrument for

aggregate estimation that addresses the endogeneity of aggregate price and Sharpe ratio.

The dynamic estimation procedure allows me to exploit both cross-sectional and time-series

variation in institutional holdings and jointly estimate micro- and macro-elasticities.

The two-tier system could shed light on a broad set of debates related to the role of

institutional demand and short sales in both individual and aggregate stock markets. For

individual stocks, I find that asset-specific latent demand is the dominating source of return

volatility, and institutional demand accounts for a large portion, if not all, of observed return

premiums in size, value and investment. Regarding short sales, short-sale constraints cannot

explain return anomalies and were not a crucial factor for the formation of the dot-com

bubble. However, short sales have significant but disparate pricing impact on stocks with

different characteristics. A short-sale ban inflates stock prices, especially for large and less

profitable firms but not for small firms. For the aggregate stock market, I find that unob-

served aggregate preference and beliefs rather than risk-return balance is the main driver

of return predictability of dividend-price ratio. Future work could build on the two-tier de-

mand system to incorporate other asset classes and answer questions about how institutional

demand explains movements in aggregate and individual markets jointly.
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Table 1: Estimated Coefficients on Diversification Value

Long Investors Short Sellers
Estimate 0.06 0.31
S.E. (0.01) (0.15)

This table reports the estimated coefficients θ on diversification value defined in Equations
4 and 8. Standard errors are reported in parentheses.

Table 2: Standard Deviation and Auto-Correlation of Aggregate Latent Demand

Investor Standard Lag 1 Auto- S.E. of Auto-
Type Deviation Correlation Correlation
Banks 0.38 0.38 (0.01)
Insurance companies 0.48 0.13 (0.01)
Investment advisors 0.42 0.22 (0.00)
Mutual funds 0.53 0.46 (0.00)
Pension funds 0.41 0.39 (0.01)
Households 0.45 0.17 (0.08)
Short sellers 0.17 0.43 (0.07)

This table reports the standard deviation and lag 1 auto-correlation of the approximate
aggregate latent demand in Equation 20 by investor type. Standard errors of auto-correlation
are reported in parentheses. The quarterly sample period is from 1981q1 to 2019q4.
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Table 3: Variance Decomposition of Stock Returns

Full Sample Post 2000
% of Variance % of Variance

Supply-side:
Shares outstanding 1.0 1.1

(0.1) (0.2)
Stock characteristics 9.2 8.9

(0.3) (0.5)
Dividend yield 0.5 0.3

(0.0) (0.0)
Demand-side:

Total Wealth 2.5 3.8
(0.2) (0.4)

Aggregate coefficients 0.1 0.2
(0.1) (0.1)

Coefficients on characteristics 3.3 3.9
(0.3) (0.6)

Aggregate latent demand 0.5 1.1
(0.2) (0.3)

Asset-specific latent demand: Extensive margin 14.0 13.1
(0.2) (0.4)

Asset-specific latent demand: Intensive margin 69.0 67.7
(0.4) (0.6)

Observations 154,343 82,051

This table reports the cross-sectional variance decomposition of annual stock returns into
supply- and demand-side effects. Heteroskedasticity-robust standard errors are reported in
parentheses. The full sample period is from 1982 to 2019.
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Table 4: Institutional Demand and Return Premiums

Return Real Counter
Premium (in %) Data Factual

Panel A: No institutional demand
Size -20.18 (6.55) -0.73 (7.32)
Value 18.69 (5.94) 11.89 (3.33)
Profitability 5.37 (2.70) 5.40 (2.50)
Investment -23.00 (4.53) -1.24 (3.35)

Panel B: No shorting
Size -20.18 (6.55) -15.54 (5.45)
Value 18.69 (5.94) 15.98 (5.29)
Profitability 5.37 (2.70) 5.31 (2.26)
Investment -23.00 (4.53) -17.71 (3.88)

This table reports the the average annual return spreads between the top decile and the bot-
tom decile sorted by size, value, profitability, and investment in real data and counter-factual
scenarios. In Panel A, institutions are neutral towards the corresponding characteristics. In
Panel B, short sales are banned. Standard errors are reported in parentheses. The annual
sample period is from 1982 to 2019.

Table 5: Repricing Effect of a Short-Sale Ban

Market Average Average BE/ME Average Average
Cap Repricing Repricing Ratio Repricing Repricing
Decile (in %) (in %) Decile (in %) (in %)

08q3-09q4 Full Sample 08q3-09q4 Full Sample
1 -1.04 (0.13) -0.51 (0.09) 1 3.31 (0.33) 1.50 (0.13)
2 -0.54 (0.23) -0.40 (0.09) 2 2.71 (0.41) 1.00 (0.08)
3 0.76 (0.54) 0.31 (0.16) 3 3.81 (0.41) 1.31 (0.11)
4 3.37 (1.20) 1.48 (0.27) 4 2.45 (0.48) 1.13 (0.09)
5 9.30 (2.57) 2.83 (0.38) 5 2.15 (0.45) 1.09 (0.10)
6 16.18 (2.99) 4.35 (0.51) 6 2.52 (0.77) 0.92 (0.08)
7 19.24 (2.94) 5.27 (0.55) 7 2.72 (0.68) 0.93 (0.08)
8 18.23 (2.03) 4.32 (0.44) 8 2.65 (0.47) 1.06 (0.10)
9 9.20 (0.39) 3.13 (0.24) 9 4.62 (0.85) 1.13 (0.11)

10 0.34 (0.17) 0.40 (0.03) 10 3.35 (0.35) 2.08 (0.17)

This table reports the average repricing defined in Equation 28 around the 2008 financial
crisis and in the full sample on stocks sorted by market capitalization and book-to-market
ratio. Standard errors are reported in parentheses. The quarterly sample period is from
1981q1 to 2019q4.
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Table 6: Repricing Effect of a Short-Sale Ban - Continued

Profitability Average Average Investment Average Average
Decile Repricing Repricing Decile Repricing Repricing

(in %) (in %) (in %) (in %)

08q3-09q4 Full Sample 08q3-09q4 Full Sample
1 13.58 (3.05) 4.96 (0.61) 1 7.55 (1.65) 1.87 (0.21)
2 7.48 (0.88) 3.13 (0.39) 2 6.52 (1.13) 1.64 (0.16)
3 6.31 (0.67) 1.78 (0.18) 3 4.01 (1.05) 1.19 (0.11)
4 4.39 (0.54) 1.23 (0.11) 4 2.55 (0.73) 0.84 (0.08)
5 3.30 (0.53) 1.03 (0.09) 5 2.45 (0.41) 0.82 (0.07)
6 3.26 (0.89) 1.00 (0.10) 6 2.01 (0.59) 0.85 (0.07)
7 2.95 (0.66) 0.85 (0.09) 7 1.19 (0.40) 0.84 (0.08)
8 2.06 (0.42) 0.93 (0.08) 8 2.44 (0.63) 1.16 (0.10)
9 1.57 (0.32) 0.82 (0.06) 9 3.69 (0.30) 1.60 (0.13)

10 2.69 (0.36) 1.26 (0.09) 10 5.37 (0.73) 2.11 (0.22)

This table reports the average repricing defined in Equation 28 around the 2008 financial
crisis and in the full sample on stocks sorted by profitability and investment. Standard errors
are reported in parentheses. The quarterly sample period is from 1981q1 to 2019q4.

Table 7: Return Predictability of Dividend-Price Ratio

Horizon h=1 h=2 h=3 h=1 h=2 h=3

Real Data Idiosyncratic Latent Demand
D/P Coef 0.03 0.07 0.11 0.00 0.04 0.05
P-value 0.09 0.01 0.00 0.87 0.19 0.20

Neutral Towards Sharpe Combined Effects
D/P Coef 0.03 0.07 0.11 0.00 0.04 0.05
P-value 0.16 0.04 0.01 0.93 0.30 0.24

This table reports coefficient estimates and the corresponding p-values from regressions of
future log excess return on log dividend-price ratio for the value-weighted market portfolio.
The top-left panel presents results from real data, and the other three panels present results
from simulated data. The sample period for quarterly regressions is from 1981q2 to 2019q4.
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Figure 1: Estimated coefficients on characteristics. This figure reports the cross-sectionally
averaged coefficients in Equation 14 by investor type, weighted by total investment in risky
assets. The quarterly sample period is from 1981q1 to 2019q4.
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Figure 2: Standard deviation of asset-specific latent demand. This figure reports the cross-
sectional standard deviation of log asset-specific latent demand in Equation 14 by investor
type, weighted by total investment in risky assets. The quarterly sample period is from
1981q1 to 2019q4.
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Figure 3: Estimated aggregate coefficients and equity weights. This figure reports the cross-
sectionally averaged aggregate coefficients and portfolio weights on equities (risky assets) in
Equations 18 and 20 by investor type, weighted by total investment in risky assets. The
quarterly sample period is from 1981q1 to 2019q4.
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band. The annual sample period is from 1982 to 2019.
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Figure 5: S&P 500 index and overall index with counter-factual short-selling activities.
Overall index consists of all stocks in the sample. The counter-factual index values are
computed by banning or increasing short sales. The quarterly sample period displayed is
from 1996q1 to 2003q4.
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Figure 6: Different stock indices with counter-factual short-selling activities. Small and large
indices consist of the lower 30% or upper 30% of stocks sorted by market capitalization.
Growth and value indices consist of the lower 30% or upper 30% of stocks sorted by book-
to-market ratio. The counter-factual index values are computed by banning or increasing
short sales. The quarterly sample period displayed is from 1996q1 to 2003q4.
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A Data Construction Details

I summarize the detailed data construction in this section.

A.1 Asset-Level Data

The data on stock prices, dividends, returns, and shares outstanding are from the Center

for Research in Security Prices (CRSP) Monthly Stock Database. In cases of missing prices

or shares outstanding, I supplement these data using the Thomson Reuters Institutional

Holdings Database (s34 file), if available. Eventually, the sample is restricted to assets

with non-missing prices and shares outstanding. The data on fundamentals are from the

Compustat North America Fundamentals Annual and Quarterly Databases. Based on the

CRSP/Compustat Merged (CCM) link table, the CRSP data are merged with the most

recent Compustat data as of at least 6 months and no more than 18 months prior to the

trading date. Finally, the data on risk-free rate and market excess return are from the

Kenneth R. French Data Library.

Asset characteristics include log market equity, log book equity, profitability, investment,

dividends to book equity, and market beta. Market equity is price per share times the number

of shares outstanding. Book equity is stockholders’ equity plus deferred taxes and investment

tax credit minus preferred stock. Profitability is the ratio of operating profits to book equity,

where operating profits is computed as revenue minus the sum of cost of goods sold, selling,

general and administrative expenses, and interest expenses. Investment is the annual log

growth rate of total assets. Dividends to book equity is the ratio of annual dividends per

split-adjusted share times shares outstanding to book equity. Market beta is estimated via

a 60-month rolling window regression of monthly excess return onto market excess return,

with a minimum window of 24 months. To remove extreme outliers, I winsorize profitability,

investment, and market beta at 2.5% and 97.5% and the dividends to book equity ratio at

97.5% for each time period.

A.2 Aggregate-Level Data

The data on risk-free rate and market excess return are from the Kenneth R. French Data

Library. Other aggregate data used in the construction of aggregate Sharpe ratio are from

the U.S. department of treasury and Federal Reserve Economic Data (FRED).

The aggregate Sharpe ratio is constructed following Whitelaw (1994) and Tang and

Whitelaw (2011). A GARCH(1,1) model is estimated over monthly market excess return
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from 1953m4 to 2019m12. In the mean equation, I include the Baa-Aaa spread, the divi-

dend yield, the one-year Treasury yield and the lagged market excess return. In the variance

equation, I include the one-year Treasury yield and the commercial paper-Treasury spread.

Once the model is estimated, the monthly Sharpe ratio is computed as the ratio of expect-

ed market excess return over the corresponding standard deviation in the current month.

Finally, the quarterly Sharpe ratio is computed as the average of the monthly Sharpe ratio

multiplied by
√

3 within the quarter.

A.3 Investor-Level Data

The data on institutional holdings are from the Thomson Reuters Institutional Holdings

Database (s34 file), with a coverage from 1980q1 to 2019q4. The stock-level short interest

data are from Compustat North America Supplemental Short Interest File. The holdings

data are merged with CRSP-Compustat data by CUSIP number.

The data on institution types are either from Koijen and Yogo (2019), who have hand

corrected noticeable errors in the type data from the Thomson Reuters Institutional Holdings

Database (s34 file), or directly from the latter if the former is unavailable. According to

the data, institutions are grouped into six types: banks, insurance companies, investment

advisors, mutual funds, pension funds, and other 13F institutions. I define the household

sector as the investor who holds the residual shares between total shares outstanding and the

sum of shares held by the institutions and short sellers. I also include in the household sector

any institution with less than $10 million of total investment in risky assets, no base risky

asset, or no risky assets other than the base asset in the investment universe. Therefore, the

household sector represents direct household holdings and small institutional investors.

For each investor, total investment in risky assets A∗i,t is computed as the total market

value of asset holdings reported in Form 13F. The effective number of shares of the aggregate

risky asset market held by each investor is computed as the total investment in risky assets

divided by the aggregate price of the risky asset class. The aggregate price is determined by

Equation 1, with the divisor set at 1 million. Following Koijen and Yogo (2019), I define the

investment universe for each investor Ni,t as all risky assets that are currently held or were

ever held in the previous 11 quarters. The conditional portfolio weights within the risky

asset class w
n|∗
i,t is the market value of individual asset holdings over total investment in risky

assets. For the investor-level characteristics used in Section 4.2, I measure investor size with

the log of average past investment in risky assets, log(1 + 1
3

∑3
k=1 |A∗i,t−k|), and measure the

activeness of management with average past active share, 1
3

∑3
k=1 actshri,t−k. An investor’s
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active share is computed as

actshri,t =
1

2

∑
n∈Ni,t

∣∣∣∣wn|∗
i,t − w

n,me|∗
i,t

∣∣∣∣
where w

n,me|∗
i,t is the market-weighted risky portfolio within investor i’s investment uni-

verse at time t.

Table 8 summarizes the 13F institutions as a whole and by type from 1980q1 to 2019q4.

At the beginning of the sample, 535 institutions managed 34 percent of the stock market.

This number grows steadily to 4,051 institutions that managed 67 percent of the stock market

by the end of the sample. From 2015 to 2019, the median institution managed $385 million

and held 70 stocks, while larger institutions at the 90th percentile managed $5,747 million

and more diversified portfolios at the 90th percentile consisted of 503 stocks.
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Table 8: Summary of 13F Institutions by Type

Total investment in Number of Number of stocks
% of risky assets ($ in mil) stocks held in investment universe

Period Number of market 90th 90th 90th
institutions held Median percentile Median percentile Median percentile

All Institutions
1980–1984 535 34 347 2,740 123 401 191 544
1985–1989 768 42 418 3,712 123 471 222 731
1990–1994 964 47 426 4,792 113 541 207 863
1995–1999 1,317 52 493 6,936 109 610 191 1,032
2000–2004 1,798 58 399 6,356 97 579 183 1,100
2005–2009 2,478 66 378 5,810 83 521 163 1,049
2010–2014 2,986 65 370 5,777 74 498 139 928
2015–2019 4,051 67 385 5,747 70 503 125 888

Banks
1980–1984 204 14 340 2,925 164 516 243 689
1985–1989 202 15 506 4,342 210 631 337 944
1990–1994 199 13 502 6,389 215 767 341 1,156
1995–1999 173 11 630 16,679 238 1,177 360 1,806
2000–2004 159 11 469 22,432 234 1,410 379 2,202
2005–2009 157 11 447 18,736 210 1,452 339 2,321
2010–2014 154 10 515 19,092 192 1,291 306 1,989
2015–2019 156 11 807 33,341 229 1,693 346 2,196

Insurance companies
1980–1984 58 3 396 2,322 100 392 160 523
1985–1989 65 3 473 2,663 104 443 209 692
1990–1994 68 3 656 3,628 126 585 246 886
1995–1999 68 4 1,336 8,416 162 1,013 312 1,421
2000–2004 57 4 1,469 13,023 240 1,830 459 2,256
2005–2009 46 4 1,765 29,212 344 2,027 542 2,583
2010–2014 44 2 1,492 38,266 242 2,039 411 2,434
2015–2019 48 2 2,325 52,203 197 2,305 315 2,637

Investment advisors
1980–1984 134 5 283 1,233 88 239 151 380
1985–1989 262 8 262 1,301 78 241 153 498
1990–1994 362 9 225 1,385 75 232 143 464
1995–1999 657 7 280 1,485 76 223 131 451
2000–2004 1,138 9 284 1,806 77 247 146 539
2005–2009 1,819 16 302 2,647 70 297 141 661
2010–2014 2,388 19 309 3,098 63 306 122 632
2015–2019 3,349 20 330 3,241 63 353 113 666

Mutual funds
1980–1984 91 8 533 3,573 150 408 244 559
1985–1989 180 12 708 5,110 140 464 282 779
1990–1994 280 18 950 6,793 138 545 272 942
1995–1999 364 27 1,694 16,317 157 745 313 1,347
2000–2004 323 30 2,463 26,588 194 1,222 421 2,006
2005–2009 271 32 3,114 48,075 208 1,172 452 2,111
2010–2014 244 29 3,815 46,161 201 1,134 412 2,017
2015–2019 218 30 5,064 61,574 209 1,300 425 2,048

Pension funds
1980–1984 24 3 1,213 3,873 114 401 151 479
1985–1989 32 4 1,222 7,682 236 682 316 791
1990–1994 33 4 1,036 15,378 308 994 472 1,215
1995–1999 30 3 1,922 27,552 425 1,353 701 1,631
2000–2004 35 3 4,535 39,489 620 2,092 939 2,534
2005–2009 40 3 6,451 37,865 716 2,312 1,092 2,709
2010–2014 52 2 4,951 27,082 549 1,698 796 2,294
2015–2019 53 2 7,167 38,118 584 1,617 870 2,203

Other
1980–1984 24 1 225 1,517 69 189 95 265
1985–1989 28 1 255 1,269 69 228 104 434
1990–1994 21 1 262 2,494 75 169 112 384
1995–1999 23 0 293 1,998 84 141 120 377
2000–2004 87 0 191 1,656 53 259 100 427
2005–2009 145 1 197 2,718 41 333 99 743
2010–2014 104 2 280 7,252 48 640 105 1,075
2015–2019 227 2 333 5,817 38 494 71 781

Short sellers
1980–1984 1 0 -1,724 -1,724 717 717 974 974
1985–1989 1 0 -6,609 -6,609 862 862 1,121 1,121
1990–1994 1 0 -16,820 -16,820 1,071 1,071 1,277 1,277
1995–1999 1 -1 -72,631 -72,631 1,515 1,515 1,658 1,658
2000–2004 1 -1 -157,100 -157,100 2,077 2,077 2,217 2,217
2005–2009 1 -2 -407,932 -407,932 3,603 3,603 3,619 3,619
2010–2014 1 -2 -564,554 -564,554 3,326 3,326 3,328 3,328
2015–2019 1 -2 -890,730 -890,730 3,480 3,480 3,482 3,482

This table reports the time-series mean of each summary statistic within the given period.
The quarterly sample period is from 1980q1 to 2019q4.
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B Simulation of Aggregate Estimation

I demonstrate the performance of the aggregate estimation procedure proposed in Section

4.2 in a simple simulation environment. To speed up each estimation, I set the number

of periods at T = 500, the number of individual risky assets at N = 11, the number of

investors at I = 50, and all coefficients to be constant instead of time-varying. For simplicity,

I drop households and short sellers and independently draw investors’ total wealth Ai,t from

N(500, 5).

The conditional portfolio weights within the risky asset class are generated as in Equations

2 and 3. Specifically,

w
n|∗
i,t

w
1|∗
i,t

= exp

(
β0 + β1me

n
t + β2x

n
t

)
ξni,t, n = 2, ..., N

where the coefficients are β0 = −1, β1 = 0, β2 = 1, the characteristics are drawn from

xt
i.i.d.∼ U [0, 0.1], and the latent demand is drawn from log ξni,t

i.i.d.∼ N(0, 0.32). To focus solely

on the aggregate estimation, I assume the econometrician has knowledge of the coefficients

on asset characteristics and asset-specific latent demand when constructing the instruments

proposed in Equations 21–23.

The portfolio weights between asset classes are generated as in Equations 4–6. Specifi-

cally,

w∗i,t
w0

i,t

= exp

(
α0 + α1SRt + θΓ∗i,t + ξ̃∗i,t

)
(29)

Γ∗i,t = log

(
1 +

∑
n>1

exp(β0 + β1me
n
t + β2x

n
t )ξni,t

)

where the coefficients are α0 = 1.5, α1 = 0.6, θ = 0.1, which are set to match the

moments and range of the estimated portfolio weights on equities. The aggregate latent

demand is generated through ξ̃∗i,t = ηt +ui,t, where ηt ∼ N(0, 0.52) is the common factor and

ui,t
i.i.d.∼ N(0, 0.32) is the idiosyncratic part.

Finally, Sharpe ratio and prices are determined endogenously by market clearing 9. I then

follow the exact procedure described in Section 4.2 to estimate the aggregate coefficients.

Figure 7 reports the distributions of estimates from 1,000 replications. The key takeaway

is that the proposed estimator uncovers aggregate coefficients accurately, with the average
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estimation error strictly smaller than 0.01 for all coefficients.
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Figure 7: Simulation results of the aggregate estimation. This figure reports the distributions
of estimation error from 1,000 replications for each aggregate coefficient in Equation 29. The
red vertical lines indicate the average estimation error.
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